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Abstract. Anonymization-based privacy protection ensures that pub-
lished data cannot be linked back to an individual. The most common
approach in this domain is to apply generalizations on the private data
in order to maintain a privacy standard such as k-anonymity. While
generalization-based techniques preserve truthfulness, relatively small
output space of such techniques often results in unacceptable utility loss
especially when privacy requirements are strict. In this paper, we intro-
duce the hybrid generalizations which are formed by not only generaliza-
tions but also the data relocation mechanism. Data relocation involves
changing certain data cells to further populate small groups of tuples that
are indistinguishable with each other. This allows us to create anonymiza-
tions of finer granularity confirming to the underlying privacy standards.
Data relocation serves as a tradeoff between utility and truthfulness and
we provide an input parameter to control this tradeoff. Experiments on
real data show that allowing a relatively small number of relocations
increases utility with respect to heuristic metrics and query answering
accuracy.
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1 Introduction

The advance of technology along with the low cost of handling data have led ser-
vice providers to collect personal information with the hope of turning this data
into profit. In some cases, the potential value of such data is so great, it needs to
be outsourced for analysis or it has to be published for research purposes as is
the case with health related data in medical research. However, such data often
contain sensitive information that needs to be kept private such as diagnosis
and treatments. Thus sharing it raises every privacy concern [10]. In order to
preserve the privacy of individuals, data needs to be properly anonymized be-
fore publishing meaning the link between sensitive information and individual
identity should be removed. Such an anonymization must not only satisfy the
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underlying privacy requirements but also preserve the utility of the data. Oth-
erwise, it would be difficult to extract useful information from the anonymized
data.

Unfortunately, just removing uniquely identifying information (e.g., SSN)
from the released data is not enough to protect privacy. Works in [23] and [24]
show that using publicly available sources of partially identifying information
(quasi-identifiers) such as age, gender and zip-code, data records can be re-
identified accurately even if there is no direct identifying information in the
dataset. For example, in Table 1, suppose we release T as a private table. Even
if T does not contain unique identifiers, an adversary that knows that her 41
years old friend Obi from USA with zip 49001 is in the dataset will be able to
identify him as tuple q7.

To prevent identification, many different privacy metrics [23,24,18,16,27,21]
have been introduced for various adversary models. As an example, k-anonymity
requires that for each tuple t in the anonymization, there should be at least
k − 1 other tuples indistinguishable with t. Two individuals are said to be in-
distinguishable if their records agree on the set of quasi-identifier attributes. To
achieve the underlying privacy standard, many algorithms have been proposed.
A common feature of these algorithms is that they manipulate the data by using
generalizations which involves replacing data values with more general values
(values that include the meaning of the original value and that may also imply
other atomic values, e.g., ’Italy’ is changed to ’Europe’) so that more tuples will
express similar meanings. As an example, suppose the desired privacy standard
is 3-anonymity. In Table 1, T ∗

µ1
is a 3-anonymous generalization of T . Note that

generalizations applied to T create two equality groups that contain similar tu-
ples with respect to QI attributes. From the adversary’s point of view, tuples
with each equality group are indistinguishable from each other. If the data owner
releases T ∗

µ1
instead of T , Obi can at best be mapped to the white equality group

of size 5 and to a set of salaries {18K, 35K, 14K, 25K, 29K}.
A nice feature of generalizations is that unlike perturbation techniques (that

apply noise to data cells independently before publishing), generalizations pre-
serve the truthfulness of data. However, generalizations result in information
loss, thus over-generalization should be avoided as long as the privacy require-
ments are satisfied. To solve this problem, many heuristics have been designed,
however relatively small output space of such techniques often results in huge
utility loss especially when privacy requirements are strict [3]. Preservation of
utility still stands as a major problem for generalization-based techniques. One
of the main reasons for over-generalization is the existence of outliers in private
datasets. As the neighborhood of the outliers is not heavily populated in the
high dimensional domain, it becomes difficult for an anonymization algorithm
to generate an equality group of sufficient size. For those algorithms that are
vulnerable to outliers, a relatively large group can degrade the overall utility of
the whole dataset [20].

To address the negative effects of outliers and over-generalization, in this pa-
per, we propose the hybrid generalization technique which combines the
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generalization technique with a data relocation mechanism in order to achieve
more utilized anonymizations. Data relocation involves changing certain data
cells (that act as outliers) to further populate small equality groups of tuples.
Over relocation harms truthfulness and localized utility, thus over-relocation
should be avoided as well. This can be achieved by bounding the number of
relocations that the algorithm can apply, thus controlling the trade-off between
truthfulness and utility. Even a small number of relocations can prevent over-
generalization. As an example, in Table 1, Table ̂T is a relocation of Table T
in which less than 10% of the data cells are relocated (see tuple q4). Table ̂T ∗

µ1

shows a 3-anonymization of ̂T (which we will also name as a 10%-hybrid 3-

anonymization of T ). ̂T ∗
µ1

is more specific than T ∗
µ1

1 and possibly more utilized.
Our contributions in this paper are as follows:

– We introduce the hybrid k-generalization concept that allows relocation of
tuples between groups to increase the overall utility at the cost of truthfulness.

– We show how one can use hybrid generalizations to achieve k-anonymity.
– We present hybrid anonymization algorithms that address three classes of

adversaries.
– We empirically compare the hybrid algorithms with previously proposed al-

gorithms and show that hybrid generalizations create better utilized
anonymizations.

2 Background and Related Work

Given a dataset (table) T , T [c][r] refers to the value of column c, row r of T .
T [c] refers to the projection of column c on T and T [.][r] refers to selection of
row r on T . We write |t ∈ T | for the cardinality of tuple t ∈ T (the number of
times t occurs in T ).

Although there aremanyways to generalize a given value, we stick to generaliza-
tions according to domain generalization hierarchies (DGH) given in Figure 1(a).

Definition 1 (i-Gen Function). For two data values v∗ and v from some
attribute A, we write v∗ = Δi(v) if and only if v∗ is the ith (grand) parent of v in
the DGH for A. Similarly for tuples t, t∗; t∗ = Δi1···in(t) iff t∗[c] = Δic t[c] for all
columns c. Function Δ(v) without a subscript returns all possible generalizations
of a value v.

E.g., given Figure 1(a), Δ1(USA)=N.AM, Δ0,2,3( <12,USA,47906>)=<12,AM,

47***>, Δ(USA)={USA,N. AM,AM,*}
Definition 2 (μ-Generalization). A generalization mapping μ is any surjec-
tive function that maps tuples from domain D to a generalized domain D∗ such

1 ’more specific’ does not necessarily mean ’more utilized’. We should take into ac-
count the cost of the relocations. We show, in Section 5, that utility gained due to
lesser degrees of generalizations more than compensates the local utility loss due to
relocations.
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Table. 1. T: private table; ̂T: a 10%-relocation of T ; T∗
μ1

, ̂T∗
μ2

: 3-anonymous sin-

gle dimensional generalizations of T and ̂T respectively; T∗
μ2

: a single dimensional
generalization of T

Id Age Nation Zip Sal.
q1 12 Greece 47906 13K
q2 19 Turkey 47907 15K
q3 17 Greece 47907 28K
q4 23 Spain 49703 14K
q5 38 Brazil 49705 18K
q6 33 Peru 49812 35K
q7 41 USA 49001 14K
q8 43 Canada 49001 25K
q9 48 Canada 49001 29K

Not. Definition

T A private table
T ∗ A generalization of T
̂T A relocation of T
̂T ∗ A hybrid generalization

of T
t ∈ T A tuple in T
μ A generalization map-

ping
T ∗
μ The generalization of T

with mapping μ

Id Age Nation Zip Sal.
q1 12 Greece 47906 13K
q2 19 Turkey 47907 15K
q3 17 Greece 47907 28K
q4 31 Brazil 49703 14K
q5 38 Brazil 49705 18K
q6 33 Peru 49812 35K
q7 41 USA 49001 14K
q8 43 Canada 49001 25K
q9 48 Canada 49001 29K

T Notations ̂T
Id Age Nation Zip Sal.
q1 11-30 EU 4* 13K
q2 11-30 EU 4* 15K
q3 11-30 EU 4* 28K
q4 11-30 EU 4* 14K
q5 31-50 AM 4* 18K
q6 31-50 AM 4* 35K
q7 31-50 AM 4* 14K
q8 31-50 AM 4* 25K
q9 31-50 AM 4* 29K

Id Age Nation Zip Sal.
q1 11-20 E. EU 47* 13K
q2 11-20 E. EU 47* 15K
q3 11-20 E. EU 47* 28K
q4 21-30 W. EU 49* 14K
q5 31-40 S. AM 49* 18K
q6 31-40 S. AM 49* 35K
q7 41-50 N. AM 49* 14K
q8 41-50 N. AM 49* 25K
q9 41-50 N. AM 49* 29K

Id Age Nation Zip Sal.
q1 11-20 E. EU 47* 13K
q2 11-20 E. EU 47* 15K
q3 11-20 E. EU 47* 28K
q4 31-40 S. AM 49* 14K
q5 31-40 S. AM 49* 18K
q6 31-40 S. AM 49* 35K
q7 41-50 N. AM 49* 14K
q8 41-50 N. AM 49* 25K
q9 41-50 N. AM 49* 29K

T ∗
μ1

T ∗
μ2

̂T ∗
μ2

that for t ∈ D and t∗ ∈ D∗; we have μ(t) = t∗ (we also use notation Δµ(t) = μ(t)
for consistency) only if t∗ ∈ Δ(t). We say a table T ∗ is a μ-generalization of a
table T with respect to a set of attributes QI and write Δµ(T ) = T ∗, if and only
if records in T ∗ can be ordered in such a way that Δµ(T [QI][r]) = T ∗[QI][r] for
every row r.

(a) DGH structures

[0,0,0]

[0,0,1] [0,1,0] [1,0,0]

[0,0,2] [0,1,1] [1,0,1] [0,2,0] [2,0,0][1,1,0]

.

.

.

[5,3,3]

[4,3,3] [5,2,3] [5,3,2]

(b) Generalization Lattice

Fig. 1.
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In Table 1, T ∗
µ1

and T ∗
µ2

are two generalizations of T with mappings μ1 and μ2

respectively; E.g, Δµ1 (T ) = T ∗
µ1
. Δµ1(<41,US,49001>) = <31-50,AM,4****>

Definition 3 (Single Dimensional Generalization). We say a mapping μ is
[i1, · · · , in] single dimensional iff given μ(t) = t∗, we have t∗ = Δi1···in(t). We
define in this case the level of μ as i1 + · · ·+ in.

Each attribute in the output domain of a single dimensional mapping contains
values from the same level of the corresponding DGH structure. In Table 1, T ∗

µ1

and T ∗
µ2

are [2,2,4] and [1,1,3] generalizations of T respectively.
Given two single dimensional mappings μ1=[i11, · · · , i1n] and μ2 = [i21, · · · , i2n],

we say μ1 is a higher mapping than μ2 and write μ1 ⊂ μ2 iff μ1 �= μ2 and i1j ≥ i2j
for all j ∈ [1− n].

We also cover multidimensional generalizations. Due to page limitations, we
refer the reader to [22] for related definitions and discussion on the advantages
of both approaches.

k-Anonymity privacy protection limits the linking of a record from a set of re-
leased records to a specific individual even if adversaries can link individuals to QI:

Definition 4 (k-Anonymity [23,5]). A table T ∗ is k-anonymous with respect
to a set of quasi-identifier attributes QI if each tuple in T ∗[QI] appears at least
k times.

T ∗
µ1

is a 3-anonymous generalization of T . Note that given T ∗
µ1
, the same adver-

sary can at best link Bob to tuples q5, q6, q7, q8, and q9.

Definition 5 (Equality group). The equality group of tuple t in dataset T ∗

is the set of all tuples in T ∗ with identical quasi-identifiers to t.

In dataset T ∗
µ1
, the equality group for tuple q7 is {q5, q6, q7, q8, q9}. We use

colors to indicate equality groups in Table 1.
While k-anonymity limits identification of tuples, it fails to enforce constraints

on the sensitive attributes in a given equality group, thus there is still a risk of
sensitive information disclosure. We start our analysis with k-anonymity because
it has a simple definition and k-anonymity and k-anonymization is still used in
several domains as a privacy metric [9,27,25] and as a sub procedure [26].

In Section 4, we use the anti-monotonicity property of k-anonymity. Given
μ1 ⊂ μ2 and a dataset T , if Δµ1(T ) is not k-anonymous, neither is Δµ2(T ). In
Table 1, if T ∗

µ2
is not 3-anonymous, neither is T .

There may be more than one k-anonymization of a given dataset, and the one
with the most information content is desirable. Previous literature has presented
many metrics to measure the utility of a given anonymization [12,20,13,6,2]. We
use the LM cost metric defined in [12]. Given a is the number of attributes:

LM(T ∗) =
1

|T ∗| · a
∑

i,j

|Δ−1(T ∗[i][j])| − 1

|Δ−1(*)| − 1

Related Work. The value of utility preservation in anonymized dataset
has been widely recognized by the literature since the very first works on
anonymization-based privacy protection.
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The first class of works on utility introduces new heuristic algorithms that
generates equality groups composed of tuples that are as close to each other as
possible. Grouping of close tuples achieves better utilized generalizations. [23] ob-
serves that all possible single dimensionalmappings create a lattice over the subset
operation. The proposed algorithm finds an optimal k-anonymous generalization
(optimal in minimizing a utility cost metric) by performing a binary search over
the lattice. [14] improves this technique with a bottom-up pruning approach and
finds all optimal k-anonymous generalizations. [2] introduces more flexibility by
relaxing the constraint that every value in the generalization should be in the same
generalized domain.Works in [18,19,16,7,21] adopt previous single dimensional al-
gorithms for other privacy notions such as �-diversity, t-closeness, and δ-presence.
Among other works on heterogeneous generalizations, works in [20,4,1,17] use
clustering techniques to provide k-anonymity. [15] and [11] partition the multi-
dimensional space to form k-anonymous and �-diverse groups of tuples. [8] makes
use of space filling curves to reduce the dimensionality of the database and pro-
vides k-anonymity and �-diversity algorithms that work in one dimension. All of
the above works are based on pure generalizations and are orthogonal to our ap-
proach. As will be clear in later sections, the relocation technique proposed in this
paper can be used to utilize most generalizations regardless of the underlying algo-
rithm. Even though we are not proposing standalone anonymization algorithms,
our approach can be considered in this category as we aim to create better equality
groups out of existing groups at the cost of truthfulness.

Another way to improve utility is by releasing more information on the equality
groups without changing the groupings of the tuples. Our approach differs from
such an approach as we form new groupings without specifying how we release the
groups. We refer the reader to [22] for a detailed discussion on these approaches.

3 Hybrid Anonymizations

3.1 Classical Adversaries

The classical adversary is the same adversary addressed inmost previous literature
(see Section 2). The adversary knows the QI attributes of an individual and tries to
discover, from the released dataset, the sensitive value belonging to the individual.

As mentioned in Section 1, data relocations can improve utility of released
datasets. One should be careful on the number of relocations applied to the
dataset as each relocation makes data less truthful. We now formally define p%-
table relocations in which the maximum number of cell relocations is bounded
by the p% of the whole dataset:

Definition 6 (p%-Table Relocations). We say a table ̂T is a p%-relocation

of a table T with respect to a set of attributes QI and write ̂T �p T , if and only
if records in ̂T can be ordered in such a way that
– T [c][r] �= ̂T [c][r] for at most p% of all possible (attribute c ∈ QI, row r) pairs

and
– T [c][r] = ̂T [c][r] for all (attribute c /∈ QI, row r) pairs.
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In Table 1, ̂T is a 10%-relocation of T as only two data cells (see q4) out of 27
is relocated. We now formally define hybrid anonymizations which are created
by anonymizing table relocations:

Definition 7 (p%-Hybrid Generalization). We say a table ̂T ∗ is a p%-
hybrid generalization of a table T with some mapping μ if and only if there
exist a ̂T �p T such that ̂T ∗ = Δµ(̂T ).

In Table 1, ̂T ∗
µ2

is a 10%-hybrid generalization of table T with mapping [1,1,3].
From now on, we assume p = 10% and do not mention p in our discussions.

Definition 8 (Hybrid k-anonymity). We say a table ̂T ∗ is a k-anonymous

hybrid of a table T if and only if ̂T ∗ is a p%-hybrid generalization of a table T
and ̂T ∗ is k-anonymous.

In Table 1, ̂T ∗
µ2

is a 3-anonymous hybrid of the table T .
As the domain of all possible generalizations of a given table T is a subset of

the domain of all possible hybrid anonymizations of T , LM cost of an optimal
hybrid anonymization will be at least as small as that of a generalization under
the same privacy standard. For example, T ∗

µ1
and ̂T ∗

µ2
both satisfy 3-anonymity,

however, ̂T ∗
µ2

has a smaller LM cost as μ2 is a more specific mapping. This

does not necessarily mean ̂T ∗
µ2

is more utilized as LM cost does not take into
account the information loss due to relocations. However, in practice, for most
applications, a small number of relocations can increase the overall utility of
the released dataset at the expense of decreasing utility on relocated data cells.
In order to benefit from hybrid anonymizations, we now state the problem of
k-anonymity in the context of hybrid anonymizations. In Section 4, given a
private table T , we propose algorithms to find a k-anonymous hybrid ̂T ∗ of T
that minimizes the LM cost metric. .

3.2 Statistical Adversaries

In a hybrid anonymization, the distribution of the tuples in the released data will
deviate from the original distribution. If the deviation is too large, an adversary
that knows about the original distribution may suspect that some groups in the
released data have been artificially populated. For example, in a census dataset,
if the adversary sees that there are considerably more males than females, the
adversary can suspect that some females are relocated. To defend against such
attack, the distance between the original distribution and relocated distribution
should be bounded such that the deviation should look as if occurred by chance.

Definition 9 (α-Hybrid k-Anonymization). Let T be a private table and X

be the multinomial random variable from which the tuples are drawn from. ̂T ∗ is
an α-hybrid if the hypothesis that the group sizes in ̂T ∗ are consistent with the
parameters of X cannot be rejected at the significance level α.

For significance testing, we use the Pearson’s chi-squared test for multinomial
distributions. Given ̂T ∗ = {G1, · · · , Gn} with mapping μ and size N , the X2

can be approximated as follows. Let Ei = N ·∑t | µ(t)=Gi
P(X = t).
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X2 =

n
∑

i

(
|Gi| − Ei

Ei
)

Note that we assume a strong adversary that knows the exact distribution X of
the tuples or sensitive values. In reality, the adversaries may only know partial
information about X , such as ”the number of Italians is less than Chinese”. As
it is difficult to predict the true background of the adversary, we assume a worst
case scenario.

In addition to the above mentioned adversaries, we will also assume adver-
saries might know the underlying hybrid algorithm. It has been shown in [26,29]
that such adversaries can reverse-engineer the anonymization algorithm and
learn information that would not be allowed by the underlying privacy metric.
However, ensuring a theoretical bound on the disclosure against such adversaries
is not a trivial problem and can also result in a huge decrease in utility. Instead,
we will make it practically hard for such an adversary to reverse-engineer the
algorithm by making random decisions during the algorithm. We will employ
multiple random sources within the algorithm that will generate many possible
pathways for the algorithm to follow.

Algorithm 1. S-Hybrid

Require: a private table T from domain D, privacy parameter k, a utility cost
metric CM , a user threshold p;

Ensure: return a minimum cost k-anonymous single dimensional hybrid gener-
alization of T .

1: create lattice lat for all possible generalization mappings for D. Let n be the
maximum level of mappings in lat.

2: for all level i from n to 0 do
3: for all mapping μ of level i in lat do
4: ̂T ∗ = createHybrid(Δµ(T ), k, p)

5: if ̂T ∗ is not k-anonymous then
6: delete node μ and all children and grandchildren of μ from lat.
7: else
8: calculate cost CM(̂T ∗) and store the cost on the lattice node.
9: if no node exists on the lat then

10: return null.
11: find the mapping μ with the minimum cost on the lat.
12: return createHybrid(Δµ(T ), k, p)

4 Hybrid Anonymization Algorithms

In this section, we present a set of single dimensional hybrid k-anonymization
algorithms each addressing a different adversary as mentioned in Section 3. All
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Algorithm 2. CreateHybrid

Require: a generalization T ∗, privacy parameter k, and a user threshold p;
Ensure: return p%−hybrid generalization ̂T ∗ with the same mapping as that

of T ∗. ̂T ∗ will not contain any more non k-anonymous groups than T ∗.
1: ̂T ∗ = T ∗;
2: let G be the set of equality groups in ̂T ∗.
3: let Gsm ⊂ G be the set of groups with less than or equal to k/2 tuples.
4: let Gbig ⊂ G be the set of groups with more than k/2 tuples, but less than

k tuples.
5: for all g ∈ Gsm do
6: let ptr be an empty group pointer to hold a target group.
7: if Gbig is not empty then
8: find the group g′ ∈ Gbig that is closest to g.
9: ptr → g′

10: else
11: find the group g′ ∈ G−Gsm that is closest to g.
12: ptr → g′

13: if ptr is null then
14: return ̂T ∗.
15: change all tuples in g so that the tuples are moved (relocated) into g′|ptr →

g′

16: remove g′, update G,Gsm, Gbig accordingly.

17: if ̂T ∗ is not a p%−hybrid generalization then
18: roll back the last change and return ̂T ∗;
19: for all g ∈ Gbig do
20: find the group g′ ∈ G − Gsm − Gbig that has more than 2k − |g| tuples

and is closest to g.
21: if no such g′ exists then
22: return ̂T ∗;
23: pick any k − |g| tuples in g′ and change the tuples such that they are

moved (relocated) into g.
24: update G,Gsm, Gbig accordingly.
25: if T ∗ is not a p%−hybrid generalization then
26: roll back the last change and return ̂T ∗;
27: return ̂T ∗;

algorithms trace the whole space of single dimensional mappings and returns a
mapping as an approximation to the problem of hybrid anonymity. The algo-
rithms are based on the optimal single dimensional anonymization algorithm,
Incognito [14] but improve Incognito by searching the space of hybrid general-
izations (Definition 7) rather than table generalizations 3.

Deterministic S-Hybrid. The pseudocode for the S-Hybrid algorithm is given
in Algorithm 1. The algorithm traverses the whole space of single dimensional
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mappings, applies each mapping to the private dataset, produces a hybrid gen-
eralization by calling the function createHybrid. Fortunately, the possible single
dimensional mappings over a table domain form a lattice on the ⊂ relation (see
Figure 1(b)). In lines 2-8, we traverse the lattice in a top-down manner. In lines
5-6, we use the anti-monotonicity property of k-anonymity to prune the lattice,
thus reduce the search space.

The pseudocode for the createHybrid function is given in Algorithm 2. The aim
of the algorithm is to convert the given generalization into a k-anonymous hy-
brid generalization with fewest relocations as possible. We start by classifying the
groups as Gsm (groups with less than or equal to k/2 tuples), Gbig (groups with
more than k/2 but less than k tuples) and G (all groups). The reason for such a
classification is that distributing the tuples in groups of few tuples while complet-
ing groups that have almost k tuples potentially minimizes the required number of
relocations. With such reasoning, the relocation of tuples are done in two phases:

Distribution: In lines 5-18, the algorithm attempts to relocate the tuples in
Gsm first into the closest group in Gbig . Two tuples are closest if they agree on
the most number of attributes. If Gbig is empty, the tuples are relocated into the
closest k-anonymous group. After this phase, some groups in Gbig may become
k-anonymous, thus may be removed from Gbig .

Completion: In lines 19-26, the algorithm relocates tuples from closest k-
anonymous groups that has enough number of tuples into groups in Gbig .

After each relocation, the algorithm checks if the maximum number of allowed
relocations (specified with the input p) has been exceeded. If that is the case,
the algorithm roll backs the last relocation and returns the non k-anonymous
hybrid generalization generated so far.

As an example, in Table 1, if we use μ2=[1,1,3] as the generalization mapping,
k = 3, and p = %10; T ∗

µ2
will be the input to the createHybrid algorithm.

The algorithm will set Gsm = {{q4}} and Gbig = {{q5, q6}}. The algorithm
starts distributing the tuples in Gsm into groups in Gbig . The tuple q4 will
be sent to the only (closest) group {q5, q6} in Gbig . As a result, q4 becomes
<31,Brazil,49703>. Note that this change only relocates 2 out of 27 data cells
thus performing the change creates a 10%-table relocation. Since the resulting
hybrid generalization is k-anonymous, the algorithm returns ̂T ∗

µ2
.

Randomized S-Hybrid. As mentioned in Section 3, adversaries that know the
underlying algorithm can attempt to reverse-engineer the algorithm and create
non k-anonymous subgroups [26,29]. Such attacks pose a threat to privacy espe-
cially if the underlying algorithm is deterministic. To resist reverse-engineering
attacks, we create the Randomized S-Hybrid algorithm.The algorithmmakes ran-
domdecisions at certain points, thus can followmultiple pathwaysmaking reverse-
engineering attacks difficult. The sources of randomness can be listed as follows:

→ In the distribution/completion phases, in lines 8, 11, and 20, instead of
picking the closest group as the target/source group for relocation, we pick the
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target group randomly from the sets Gbig or G. Most of the time, the sizes of
these sets are large enough to create a probability space of sufficient size for the
flow of the algorithm.

→ In the completion phase, in line 23, instead of relocating exactly k − |g|
tuples, we relocate a random number of tuples such that both the target and the
source group remains / becomes k-anonymous. Relocating a random number of
tuples prevents the source group to contain exactly k tuples.

Statistical S-Hybrid. As mentioned in Section 3.2, statistical adversaries use
the known distribution of the tuples to identify artificial relocations. α-Hybrid
k-anonymization addresses such adversaries by bounding the statistical difference
between the original distribution and relocated distribution. Deterministic S-
Hybrid algorithm can easily be modified so that it accepts the statistical threshold
α as an input and returns α-Hybrid generalizations. In Algorithm 2, in lines, 17
and 25, whenever we check if a relocation violates p%-Hybrid anonymity, we in-
stead check if the relocation violates α-Hybrid anonymity.

It should be noted that even with low α settings, α-Hybrid anonymity is a
strict privacy definition. That is, the definition allows fewer number relocations
making it more difficult to create a k-anonymous hybrid from a non k-anonymous
generalization. In Section 5, we empirically compare α-Hybrid anonymity with
p%-Hybrid anonymity in terms of utility and show that the former allows a lower
level of utility at the benefit of stronger privacy.

(a) Single Dimensional- LM Cost (b) Single Dimensional - Error rate

Fig. 2. Varying k - Sal

We also designed multidimensional versions of the algorithms proposed in this
section (M-Hybrid). Due to space constraints, we refer the reader to [22] for details.

5 Experiments

This section presents the experimental evaluation of S-Hybrid and M-Hybrid
algorithms. In addition to the three algorithms mentioned in Section 4, we also
evaluate algorithm S-Hybrid-rstat which is randomized S-Hybrid against statisti-
cal adversaries. During our experiments, we use the real datasets ’Sal’ and ’Occ’
that were extracted from CENSUS data and previously used by [28,8]. Both
datasets contain 100.000 tuples. As the results were similar for both dataset, we
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(a) Single Dimensional- LM Cost (b) Single Dimensional - Error rate

Fig. 3. Varying Distortion Limit p - Sal

present results only on the ’Sal’ dataset. Results on the ’Occ’ dataset can be
accessed from [22].

We used two metrics to measure utility: LM cost metric defined in Section 2
and the range query error rate used in [8,15]. Query error is calculated by issuing
count queries on anonymizations and normalizing the deviation of count from
the original count in the private dataset.

Varying Privacy Parameter k
We first fix the distortion limit as %1, α as %5, vary the value of k and compare
S-Hybrid algorithm with the previously proposed single dimensional Incognito
algorithm with respect to the LM cost and query error metric. Note that %1
distortion limit is almost a negligible sacrifice from the truthfulness of data.
Figure 2 shows the results on the ’Sal’ dataset. According to utility cost exper-
iments, in nearly all cases, all Hybrid approaches give better results than the
algorithm Incognito. S-Hybrid and randomized S-Hybrid perform better than
statistical Hybrid algorithms. As mentioned before, this is because, compared to
hybrid k-anonymity, α-hybrid k-anonymity is a strict privacy definition assum-
ing a powerful adversary. In most cases, the number of allowed relocations for
α-hybrid anonymity is much smaller than that for hybrid anonymity resulting
in less utilized anonymizations. For statistical S-Hybrid and Incognito, for some
cases, we observed fluctuations in error rates when we increase k. The reason
is that, in these settings, the resulting mappings cannot be ordered with re-
spect to the ⊂ operator (see the definition of higher mappings in Section 2) and
are close to each other in the generalization lattice. Any one of the mappings
can be considered better utilized than the other depending on the underlying
application.

Varying Distortion Limit p
In these experiments, we fix the value of k as 10, α as %5, vary the value of the
distortion limit p. We present the results in Figure 3. We see that non statistical
S-Hybrid algorithms increase in utility as we increase the distortion limit (e.g.,
as we apply more and more relocations). Statistical S-Hybrid algorithms are
not very sensitive to changes in p. The reason is that significance test via the
parameter α is more decisive on the number of allowed relocations than the
limit via the p. Generally, significance test for further relocations fail even before
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the number of relocations reach %0.1. Thus the utility of statistical S-Hybrid
algorithms do not change much. The comparison of algorithms with each other
is similar as mentioned in the previous section.

We also made experiments regarding the multidimensional hybrid algorithm,
M-Hybrid. M-Hybrid algorithms show a similar behavior. Due to space con-
straints, we refer the reader to [22] for experimental results.

6 Future Work

As a possible future work, new hybrid algorithms can be designed for other
privacy metrics such as �-diversity, (α, k)-anonymity or δ-presence. This would
be crucial in addressing different types of adversaries. There is also room for
improvement for the hybrid algorithms proposed in this paper. For example, one
can design hybrid algorithms that would theoretically bound the probability of
identification against algorithm-aware adversaries. Hybrid techniques can also
be evaluated with respect to different cost metrics and real applications so that
utility gain can better be quantified under different scenarios.
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